POULTRY MANURE DRY STACK STRUCTURE

DESIGN WORKSHEET (THREE WALLS)

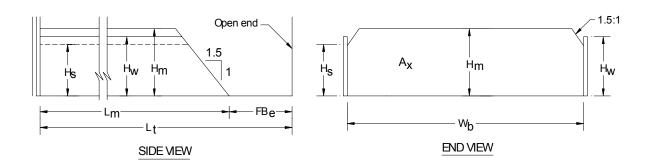
Vol = Vol	olume of litter stored	(Form AL-ENG-25E	Item "O."):	:

W_b = Width of building: _____ ft. (Use actual inside working dimension; i.e., 39 ft.)

H_m = Max height of pile in middle (Max. 7 ft.): _____ ft.

H_s = Height of pile at side walls (Max for wooden wall = 4 ft.): _____ ft.

H_w = Height of wall (H_s + Freeboard): ______ ft. (Maximum 5 ft.)


 A_x = Cross sectional area of pile (calculate below).

 L_{m} = Length on manure pile (calculate below).

L_i = Length of building (initial calculation) including FB_e.

L_t = Total length; L_i adjusted to account for spacing between side posts.

 FB_e = Horizontal freeboard from toe of pile to open end of building. If composter occupies this space, let FB_e = length of composter = _____; otherwise FB_e = 12.

$$A_X = H_m W_b - 1.5 (H_m - H_s)^2 = (____x ___) - 1.5 (___ - ___)^2 = ___sq. ft.$$

$$L_{\rm m} = {\rm Vol} / {\rm A_x} + (0.75 {\rm H_m}) = (_______) + (0.75 {\rm x} _____) = _____ft.$$

$$L_i = L_m + FB_e =$$
_____ft. Post spacing: _____ft. c-c

 $L_t = \underline{\hspace{1cm}}$ ft. (NOTE: Round L_i up or down to accommodate post spacing.)

Floor area = $W_b \times L_t$ (For W_b use nominal width; i.e., 40 ft.) + Composter Area (See Drawings)

Floor area x cost/sq. ft. = Estimated total cost of structure